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Eleven anesthetized rhesus monkeys were used to study
cardiovascular, renal, and endocrine alterations associated
with 120 min of head-out water immersion. Five animals
underwent complete intrapericardial denervation using the
Randall technique, while the remaining six monkeys served as
intact controls. Each animal was chronically instrumented
with an electromagnetic flow probe on the ascending aorta, a
strain gauge pressure transducer implanted in the apex of the
left ventricle (LV), and electrocardiogram leads anchored to
the chest wall and LV. During immersion, LV end-diastolic
pressure, urine flow, glomerular filtration rate, sodium excre-
tion, and circulating atrial natriuretic peptide (ANP) each
increased (P < 0.05) for intact and denervated monkeys.
There were no alterations in free water clearance in either
group during immersion, yet fractional excretion of free water
increased (P < 0.05) in the intact monkeys. Plasma renin
activity (PRA) decreased (P < 0.05) during immersion in
intact monkeys but not the denervated animals. Plasma
vasopressin (PVP) concentration decreased (P < 0.05) during
the first 30 min of immersion in both groups but was not
distinguishable from control by 60 min of immersion in
denervated monkeys. These data demonstrate that complete
cardiac denervation does not block the rise in plasma ANP or
prevent the natriuresis associated with head-out water immer-
sion. The suppression of PVP during the first minutes of
immersion after complete cardiac denervation suggests that
extracardiac sensing mechanisms associated with the induced
fluid shifts may be responsible for the findings.

water immersion; natriuresis; vasopressin; cardiac denerva-
tion; monkey

DURING WATER IMMERSION the induced external hydro-

static pressure forces blood and body fluids toward the
heart and head, causing a significant rise in atrial

pressure and pronounced neural and hormonal re-
sponses (1, 13, 14, 23, 26, 27, 36). Resulting stimulation
of low-pressure baroreceptors, the so-called Gauer-
Henry reflex, appears to cause inhibition of vasopressin
via vagal pathways to the hypothalamus (13, 14). The
hemodynamic response to the resulting headward fluid
shift is a change in vascular tone and venous resistance
and a redistribution of blood flow from arterial to
venous sides of the circulation and a final return of atrial

pressure to normal levels. Decreases in circulating vaso-
pressin cause a reduction in sensed increased central
vascular fluid volume through an increase in urine flow
and a free water diuresis (12, 16, 18, 21, 22, 33).

In contrast to consistent findings in the dog (14),
Gilmore and co-workers (17, 18) found that volume

expansion and water immersion-induced diuresls and
natriuresis in nonhuman primates are not attenuated
by vagotomy and/or sectioning of dorsal root ganglia.
Urine flow and salt loss were also unaffected by cardiac
denervation after volume loading in this latter animal
model (16, 37). Similarly, Myers et al. (32) reported that
a diuresis and natriuresis occurred after water immer-
sion-induced central volume shifts in human cardiac

transplant patients. These findings indicate that ob-
served responses may occur by mechanisms other than
loss of vagal afferent traffic and/or input from low-
pressure baroreceptors, as postulated by Gauer and
colleagues (13, 14).

To further study this phenomenon, the cardiovascu-
lar, endocrine, and renal responses to head-out water
immersion in intact rhesus monkeys were compared

with the identical responses of monkeys that had under-
gone complete intrapericardial denervation. Mainte-
nance of a water immersion response in a denervated
model would confirm previous reported studies using

fluid loading in this model (37) and point to possible
mechanisms for the observed findings.

MATERIALS AND METHODS

Eleven mature and healthy rhesus monkeys, weighing
between 4.5 and 10.2 kg, were used in conformance with the
"Guiding Principles in the Care and Use of Animals" of the
American Physiological Society. All 11 animals were adapted
to their housing several months before the experiment.

Five animals (2 males and 3 females) underwent complete
intrapericardial denervation by use of the Randall technique
(38). This procedure produces efferent and afferent cardiac
denervation through intrapericardial sectioning of sympa-
thetic and parasympathetic nerves. Included were sectioning
of the intrapericardial branches of the left and right thoracic
vagi and ventrolateral cardiac nerve, as well as the nervous
tissue surrounding the base of the heart (the aorta and
pulmonary artery), atria, and the vena cava. The procedure
sections the vagal paths to the heart but does not interrupt
pathways to other organs. The procedure completely dener-
vates the cardiac receptors, but it spares the high-pressure
sinoaortic baroreceptor pathways. During this procedure, the
left and right thoracic vagi and the left and right stellate
ganglia were identified and stimulated using a Grass stimula-
tor (Grass Instruments, Quincy, MA) and bipolar leads (38).
Completeness of efferent cardiac denervation was verified by a
lack of heart rate response to vagal and stellate ganglia
stimulation. Additionally, after surgery and over the course of
subsequent procedures, the completeness of efferent denerva-
tion was verified by pharmacological challenge with a continu-
ous intravenous infusion of phenylephrine (2 mg' kg-l" min 1,
2 min; 4 mg'kg -_ .min l, 2 min; 8 mg.kg l'min a, 2 min) and
bolus injection of 0.95 mg of atropine 5 min after cessation of
the phenylephrine infusion. Lack of heart rate change from
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resting levels was considered an indication of completeness of

efferent denervation. Finally, we previously reported (31) that

there are no changes in radial artery blood flow (RABF) or

heart rate (HR) in cardiac-denervated animals during a ramp

of lower body negative pressure (LBNP). RABF and HR

responses were measured in all monkeys during a ramp of

LBNP that was performed within 3 days after the water
immersion trials. RABF decreased and HR increased in intact

animals during LBNP, whereas there were no changes in
RABF or HR in the denervated animals. This observation was

used as further confirmation for completeness of the afferent

denervation procedure.

All 11 animals were instrumented with electromagnetic

flowmeters (Zepeda Instruments, Seattle, WA) placed around

the ascending aorta and two leads anchored to the external

surface of the left ventricle for direct electrocardiographic
(ECG) measurement. Six animals (1 male and 5 females)

served as controls and underwent all procedures except cardiac

denervation. A solid-state strain gauge pressure transducer

(Konigsberg Instruments, Pasadena, CA) was implanted

through the apex of the left ventricle in all animals. Lead wires

were exteriorized 14 days after surgery, and the presence of

efferent denervation was verified pharmacologically. Water

immersion studies were conducted ~4 wk postsurgery with

pharmacological verification of denervation immediately after

completion of the study.
Previous studies (3, 4) have shown that ketamine blocks the

natriuretic effects of water immersion. Thus each monkey was

taught to enter a restraint chair with a pole and collar system

(Primate Products, Woodside, CA) and was trained over a

2-mo period to sit quietly in a primate chair for 2- to 4-h

periods without the use of anesthetic agents. Restraint was

used with the approval of the National Aeronautics and Space
Administration-Ames Research Center Institutional Animal

Care and Use Committee and with the supervision of staff

veterinarians. In addition to chair conditioning, the animals

were trained to allow the investigator to handle arms and legs

for the purpose of intravenous administration ofpentobarbital

anesthesia for the water immersion experiment. On the day of

a study, the animals were transferred from their cages to a

restraint chair and were anesthetized with pentobarbital

sodium (50 mg/ml; ~0.5 ml/kg body wt, given to effect).
Arterial and venous catheters were surgically implanted via a

femoral cutdown, and a Foley catheter was inserted into the
bladder via the urethra. After full instrumentation, the animal

and restraint chair were placed in the empty water immersion

chamber (24) for a 60-min equilibration period. This was

followed by a 90-min control period. During this period the

tank was filled with water to just below foot level and

circulated by pump so as to be maintained at 34.7 -+ 0.5°C

(Yellow Springs Instruments thermistor) by external heating
coils. It took 2 min to fill the tank to the neck level with

additional water during this immersion period. Water immer-
sion was maintained for 120 min. After immersion the tank

was emptied, and a 60-min immediate recovery period was

observed in which the animals were seated in the empty

chamber. Blood and urine samples and cardiovascular data
were obtained at 30-rain intervals (i.e., 0, 30, 60, and 90 min of

control; 30, 60, 90, and 120 min of immersion; and 30 and 60

min of recovery). Plasma from these samples was separated

and stored at -80°C for later analysis, and the red blood cells

were rehydrated with a volume of saline equal to the volume of

plasma removed. This reconstituted volume was then rein-

fused into the animal, and the catheters were flushed with

~ 15-20 ml of heparinized saline. It was estimated that the

volume of saline infused averaged 150-200 ml, approximating

the amount of fluid lost via blood sampling and urine produc-

tion during the experiment.

Cardiovascular data were recorded continuously on an

eight-channel brush recorder (Gould, Cleveland, OH). HR and
ECG were obtained via a heart rate meter (Hewlett-Packard,

Waltham, MA). Peripheral arterial pressure was measured via

an Ailtech pressure transducer (Electromedics, Inglewood,

CO), with an independent barocel electronic manometer for

calibration. Left ventricular systolic and left ventricular end-

diastolic pressures (LVEDP) were measured via a strain gauge

pressure transducer (Konigsberg Instruments). The indepen-

dently obtained peripheral arterial pressure was used to

calibrate these transducers. Data reported were obtained as

average values for a 50-heartbeat segment during the last

minute of each 30-min collection period.

Urine volume was measured by completely emptying the

bladder via the Foley catheter, and all volumes were collected

for each 30-min period by an air wash of the bladder. Venous

blood samples were collected during the last minute of each

30-min period, placed in tubes containing either EDTA or

lithium heparin, and centrifuged at 4°C. The plasma was

separated and stored on ice, and the red blood cells were

reinfused along with a volume of saline equal to that of the

plasma removed.

Creatinine concentration was measured in plasma and

urine colorimetrically with a creatinine analyzer (Beckman,

Palo Alto, CA). Plasma and urine sodium and potassium

concentrations were measured using ion-sensitive electrodes

(model E3D, Beckman), and plasma and urine osmolalities

were determined via freezing point depression osmometry
(Advanced Instruments, Cambridge, MA). Values for creati-

nine clearance, sodium clearance, potassium clearance, free
water clearance, and osmotic clearance were calculated using

the urine flow rate and plasma and urine electrolyte concentra-
tions. Fractional excretions were calculated as a percentage of
creatinine clearance.

Plasma atrial natriuretic peptide (ANP) was determined

using a commercially available radioimmunoassay (RIA) kit

(Peninsula Laboratories, Belmont, CA). Before thawing, 50 jxl

ofaprotinin (0.8 mg/ml; Sigma Chemical, St. Louis, MO) were

added to each tube of plasma. After thawing, the plasma was

acidified with 1.0 N HC1 equivalent to 10% of sample volume

and extracted using Cls columns (Prepsep, Fisher Scientific,

Pittsburgh, PA). After adsorption, the sample was eluted

using methanol and trifluoroacetic acid (90.0% methanol-9.5%
distilled water-0.5% trifluoroacetic acid). The eluate was dried

in an evaporator/concentrator (Speed Vac, Savant Instru-

ments, Farmingdale, NY) and then was assayed using radioim-

munoassay (RIA) (30). Standards and each monkey plasma

sample were run in duplicate. The extraction recovery of

known quantities of ANP was 90%, and the coefficient of

variability within the assay was 8%. Plasma renin activity

(PRA) was determined using an RIA kit (New England Nuclear,

Cambridge, MA) that measured the in vitro generation of

angiotensin I. The within-assay coefficient of variability for the

PRA assay was 8%. Plasma for the measurement of plasma

vasopressin (PVP) concentration was extracted using benton-

ite and then assayed using previously published methods (25).

Standards and each monkey plasma sample were run in

duplicate.

The data were analyzed with a two-way analysis of variance

for repeated measures to determine differences between dener-

vated and intact group responses. Responses within each

treatment group were analyzed with one-way repeated-

measures analysis of variance, and means were compared with

control using Dunnett's test. The appropriate t-tests were
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Table 1. Plasma osmolality and sodium and potassium concentrations in intact and denervated monkeys

C-30 C-60 C-90 Wl-30 Wl-60 WI-120 R-30 R-60

Plasma osmolality, mosmol/
kgH20

Intact 307 -+ 6 301 -+ 3 303 -+ 3 306 -+ 3 304 -+ 2 303 -+ 2 303 -+2 301 -+3

Denervated 312_+2 314-+2 314-+3 314_+3 314_+4 314_+3 310_+2 312_+3

Plasma sodium, meq/l
Intact 141 _+2 142 _+1 142 +_2 142 _+2 142 _+ 1 141 _+2 142 _+2 142 _+2

Denervated 139 _+1 139 -+ 1 139 -+ 2 139 _+2 139 _+2 139 -+ 2 138 _+2 138 _+2

Plasma potassium, meq/l
Intact 3.3_+0.3 3.3_+0.2 3.1_+0.2 3.1_+0.2 3.2_+0.2 3.1_+0.2 3.3-+0.2 3.4-+0.1

Denervated 3.2_+0.1 3.1-+0.2 3.1-+0.1 3.1_+0.1 3.2-+0.1 3.1_+0.1 3.0-+0.1 3.0_+0.1

Values are means -+ SE for 30, 60, and 90 min of control (C-30, C-60, and C-90), 120 min of head-out water immersion (WI-30, Wl-60, and

WI-120), and 60 min of postimmersion recovery (R-30 and R-60).

used for the separation of means. The null hypothesis was
rejected when P < 0.05.

RESULTS _.0o

Plasma data. Findings for plasma osmolality and o.80.

sodium and potassium concentration (means -+ SE) are
given in Table 1. These variables failed to demonstrate _ _- o.60
changes with immersion in either intact or cardiac- wu'_
denervated monkeys, z E o.40

Renal data. Findings related to renal function are _ v

given in Figs. 1-4. After 30 min of immersion, urine 0.20
flow increased for both groups of animals. Intact ani-
mals demonstrated 0.45 ml/min flows (375%, P < 0.05), 0.00
up from preimmersion values of 0.13 ml/min. Dener-

vated animals showed increases of a similar magnitude ,,, 60.
(P < 0.05) from similar control levels (Fig. 1). During o

Z
the next (second) 30-min period of immersion, urine < 50.

n-
flow continued to increase to a level substantially greater <
than preimmersion in the intact and denervated an(- _ A
mals. These levels were maintained over the subsequent o "_ 40-

course of immersion. After immersion, urine output _ _ z0.
returned to control levels within the first 30 min of the _
recovery period in both groups of animals. Urine os- _ 20-
mot(c, sodium, and potassium excretions (Fig. 2) all ,-"'
increased (P < 0.05) during water immersion and were o 10

not greater (P > 0.05) for intact vs. denervated animals.
Peak osmotic and sodium excretion occurred at 60 min

W 0.5-
of immersion for intact animals and at the end of o

immersion for denervated subjects (Fig. 2). Both of <z 0.4.
0.3

these parameters rapidly returned to preimmersion s:
._ 0.2

levels.Potassium excretion increased from 11.7 meq/ _ _ o.1
min to a peak of 30.2 meq/min (P < 0.05) at 30 min of
immersion in intact animals and gradually declined and
was not statistically distinguishable from control (17.4
meq/min, P > 0.05) after 90 min of immersion. There
were no differences (P > 0.05) between control and
recovery period potassium excretion in either animal

group.
Glomerular filtration rate (GFR) was estimated using

endogenous creatinine clearance (Fig. 1). Compared
with control, GFR increased (P < 0.05) in intact and
denervated (P < 0.05) animals after 30 min of immer-
sion. GFR gradually returned to preimmersion levels
(P > 0.05) by the end of 90 min of immersion. Osmotic

O--O Intoct

e--e O,.or_otod l I. T

....... 9--9

0 _ 0.0

_ -o.,

_ -0.2
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w
w -0.4
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C-30 C-60 C-90 1-30 1-60 1-90 1-120 R-50 R-60

Fig. 1. Values for urine flow, endogenous creatinine clearance, and

free water clearance in intact monkeys and completely cardiac-

denervated monkeys (means _+ SE) through 90 min of dry, seated
control (C-30, C-60, and C-90); 120 min of head-out water immersion

(I-30, 1-60, 1-90, and 1-120); and 60 min of postimmersion seated
recovery (R-30 and R-60). *Significantly iP < 0.05) different from

preimmersion.
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Fig. 2. Values for total urine osmotic excretion, sodium excretion, and
potassium excretion in intact monkeys and completely cardiac-
denervated monkeys {means -+ SE) through 90 min of dry seated
control, 120 min of head-out water immersion, and 60 rain of
postimmersion seated recovery, as in Fig. 1. *Significantly (P < 0.05)
different from preimmersion; :_,, denervated monkeys significantly
different (P < 0.05) from corresponding intact group.

animals was not reached until 60 min of immersion

(P < 0.05) and was much lower than the peak attained

by the intact animals.
Indexes of renal tubular function, such as fractional

excretion of sodium (Fig. 4), increased in both groups

(87%; P < 0.05) by the first 30 min of immersion and

peaked at 90 min of immersion (300%, P < 0.05, in

intact animals; 301%, P < 0.05, in denervated mon-

keys). Fractional excretion of potassium (FEK+) de-

creased (P < 0.05) during immersion in the denervated

animals and continued to decrease during the recovery

period. In contrast, intact animals showed a tendency to

increase FEK+ during immersion. Fractional excretion
of free water increased 40% (P < 0.05) in intact animals

by the end of the 1st h of immersion and returned to

preimmersion levels during recovery. In denervated

animals, fractional excretion of free water failed to

follow this pattern and decreased (P < 0.05) during the

latter part of immersion and recovery.
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clearance (Fig. 3) increased in intact (P < 0.05) and

denervated animals (P < 0.05) by 60 min of immersion, w is.0.

remaining at this level until the recovery period, when zo
mean values returned to preimmersion levels (P > < 12.o.

0.05). Derived free water clearance (Fig. 1) was not re

altered during the experiment. _ _" o.0,

The increase in osmotic clearance was due to a 0 E
marked natriuresis and kaliuresis. Sodium clearance _ _ e.0.

(Fig. 3) increased in intact (P < 0.05) and denervated
03 3.0

animals (P < 0.05) by 30 min of immersion compared _<

with preimmersion levels. By 60 min sodium clearance O

peaked with an average increase of 614% in intact and 0. 0.0

denervated animals, remaining at this level for the

duration of immersion. Potassium clearance increased

225% (P < 0.05) in intact animals after the first 30 min

of immersion. Peak potassium clearance in denervated

_O°_ s °

!o

C-30 C-60 G-go 1-30 1-60 1-90 1-120 R-30 R-60

Fig. 3. Values for osmotic, sodium, and potassium clearance for intact
monkeys and completely cardiac-denervated monkeys through con-
trol, immersion, and recovery periods as in Fig. 1. *Significantly
different (P < 0.05) from preimmersion.
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Fig. 4. Values for fractional excretion (FE) of sodium, potassium, and

solute free water (means ± SE) in intact monkeys and completely

cardiac-denervated monkeys through control, immersion, and recov-

ery periods. * Significantly different (P < 0.05) from preimmersion; ,%

significantly different (P < 0.05) from corresponding mean in intact

group,

Endocrine data. PVP, ANP hormone concentration,
and PRA data (means _+ SE) can be found in Figs. 5 and
6. PVP decreased from 39 _+6 to 7 _+2 pg/ml (P < 0.05)
in the intact monkeys during water immersion and
returned to baseline levels during recovery (Fig. 5). In
the denervated animals PVP decreased from 53 -+ 24 to
19 -+ 7 pg/ml (P < 0.05) during the first 30 min of
immersion but then rose and was indistinguishable
from baseline levels for the remainder of the immersion
period. In contrast to that in intact animals, PVP
became significantly elevated (P < 0.05) in the dener-
vated animals during the recovery period.

PRA was elevated (P < 0.05) in the denervated
animals during the baseline state compared with the
intact animals (Fig. 6). Values decreased for the intact
group (P < 0.05) during immersion, reaching a nadir at
120 min of immersion. A similar trend was apparent in
the denervated animals; however, this was not a signifi-
cant decrease. In general, denervated animals showed

0--0 Intact

T T
e_-_o_'_, •/e/9_ o

C-30 C-60 C-90 1-30 1-60 1-120 R-30 R-60

Fig. 5. Values for plasma vasopressin (PVP) for intact monkeys and

denervated monkeys (means ± SE) through control, immersion, and
postimmersion recovery periods. Significantly different (P < 0.05)

from: * preimmersion; ±, corresponding intact group.

marked variation in PRA concentrations compared with
the intact animals.

Plasma ANP increased 350% (P < 0.05) in intact
animals and 325% (P < 0.05) in denervated animals
during water immersion (Fig. 6). Values returned to
preimmersion levels by 60 min of recovery.

Cardiovascular data. Cardiovascular responses to wa-
ter immersion (means _+SE) can be found in Figs. 7-9.

eft ventricular systolic pressure (Fig. 7) was not al-

_'15 0--0 Intact

E._ O--Q Denervated

Lu 0--0_0. 1

< 3 _ l .

O9

0

,,_ C-30 C-60 C-90 1-30 1-60 1-90 I-t20 R-30 R-60

Fig. 6. Values for plasma renin activity (PRA) and plasma atrial

natriuretic peptide (ANP) concentration for intact monkeys and

denervated monkeys (means _+ SE) through control, immersion, and

postimmersion recovery periods. Significantly different (P < 0.05)

from: * preimmersion; ,% corresponding intact group.
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Fig. 7. Values for left ventricular end-diastolic pressure (LVEDP) and

left ventricular systolic pressure for intact monkeys and denervated

monkeys (means +_ SE) through control, immersion, and postimmer-

sion recovery periods. Significantly different (P < 0.05) from: *preim-
mersion control; c, corresponding denervated group.

30 min of immersion and fell farther during the recovery

period to a level below preimmersion (-15%, P < 0.05).
Such changes did not occur in the denervated animals.

DISCUSSION

These studies represent the first report of the renal
and hemodynamic responses of cardiac-denervated non-
human primates (Macaca mulatta) to head-out water
immersion. Denervation using the Randall technique
(38) failed to prevent a diuresis and natriuresis, which
did not differ from the finding in similarly treated intact
animals. These results indicate that triggering of low
pressure located in the thorax by headward-induced
fluid volume shifts and a vagal pathway (the Gauer-
Henry reflex) may not be the responsible mechanism
under these circumstances (6, 16, 37, 40). This is further
supported by the work of Peterson and Jones (37), who
used volume loading in identically denervated crab-

eating monkeys (Macaca fasicularis). They found no
comparative differences in renal excretory function with
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tered by immersion; however, mean LVEDP (Fig. 7)
increased to 10.9 -+ 4.9 mmHg (P < 0.05) in intact and
to 10.9- 1.7 mmHg (P < 0.05)in denervated animals at
30 min of immersion and remained at these levels for

the duration of immersion. HR (Fig. 8) did not change

significantly during the immersion period; however, it
rose significantly in the intact animals (P < 0.05)
compared with control during the recovery period. Car-
diac output (Fig. 8) increased ~ 11.2% (P < 0.05), with a
proportional 11.6% (P < 0.05) increase in stroke volume
in intact animals. In denervated animals, cardiac output
increased 19.9% (P < 0.05) through a 17.5% (P < 0.05)
increase in stroke volume. Mean arterial pressure (MAP,
Fig. 9) was lower throughout the study in denervated
animals and significantly so before immersion (89 -+ 5
vs. 108 -+ 5 mmHg, P < 0.05). Mean arterial systolic,
diastolic, and pulse pressures (Fig. 9) were not altered
(P > 0.05) by immersion in either group; however,
during recovery there was a 13% (P < 0.05) drop in
diastolic pressure and a concurrent 15% (P < 0.05) drop
in systolic pressure in intact animals. This resulted in a
13% (P < 0.05) decrease in MAP. Mean total peripheral
vascular resistance (TPR, Fig. 9) was greater (P < 0.05)
in the intact than in the denervated animals throughout
the entire experiment. In the intact animals, TPR was
lower than preimmersion levels (-8%, P > 0.05) after
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Fig. 8. Values for cardiac output, heart rate, and stroke volume for
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sham-operated animals on intravenous central fluid
loading (20% increase of estimated blood volume) with
6% dextran in isotonic saline infusion. Convertino et al.

(6) also reported a decline in resting PVP in cardiac-
denervated humans due to headward shifts induced by
6° head-down tilt. Finally, these over-all data support
previous studies of anesthetized rhesus and crab-eating
monkeys showing that atrial stretch does not elicit a
diuretic response and that vagotomy and/or dorsal root
resection failed to alter an immersion-induced diuresis

(6, 16, 18). It is therefore concluded that the present
studies support previous findings that the atriorenal
reflex does not operate in nonhuman primates as origi-
nally described by Gauer and Henry in dogs, and that
this is probably the case in humans (33).

Absolute levels for PVP in this study were quite
elevated for both groups compared with values reported
in ketamine-tranquilized animals or the unanesthetized
state (4). These previous studies in our laboratory
showed this to be specifically due to pentobarbital
anesthesia (4). In four animals given 25 mg/kg Nembu-
tal, resting PVP was 56 -+ 11 pg/ml, whereas similar
levels in five tranquilized animals (ketamine 10 mg/kg)
were 14 _+ 3 pg/m and in five conscious animals were
1.8 -+ 0.9 pg/ml (3). Levels in the present study, which
utilized pentobarbital anesthesia, closely match the
previously reported PVP values. The dynamics of PVP
changes in this study demonstrated that a decrease
occurred in both groups immediately on immersion but

that suppression tended to be more sustained in the
intact group. More specifically, an increase in the frac-
tional excretion of free water occurred in the intact

monkeys despite the otherwise elevated PVP levels and
may suggest that changes in PVP are more important
than absolute resting levels, because levels recorded
during immersion far exceed those seen in the normal
resting state or during tranquilization. This was also the
case in dogs (29). PVP levels in the present study tended
to rise slightly as the immersion period progressed in the
denervated group. Of note was the marked threefold
PVP increase in denervated animals (compared with
control) during the recovery period, whereas intact
animals returned only to pretest baseline levels• This

may indicate a specific role for PVP in blood pressure
control in denervated animals because MAP fell in the

intact animals during this period and did not do so in the

denervated group (8, 9).
Free water clearance did not change in the present

study; however, the fractional excretion of free water did
increase by 40% in the intact animals. This suggests an
alteration in tubular mechanisms associated with the

absorption of solute free water that may have been due
to the observed changes in PVP secretion. Similar
changes have been reported in various animal models
and humans (35, 39). However, the elevated levels of
PVP may have been above the level needed for maximal
permeability of the monkey tubule. Alternatively, the
observed increase in fractional excretion of free water in

the intact animals may have been influenced by the
changes in other factors, such as solute load in the distal
nephron, as reported by Tischer et al. (43), or the
distribution of renal blood flow. Fractional excretion of

free water decreased in the denervated monkeys during
immersion and decreased further during recovery. Un-
fortunately, data from the present study cannot explain
the mechanism behind this group difference.

It should be noted that a difference in MAP was

present at rest and throughout the study in the two
groups, MAP being lower in the denervated animals.
This may have been due to lower preimmersion plasma
volumes in the denervated animals. Supporting this
hypothesis is the observation of lower baseline plasma
volumes in human cardiac transplant patients (6). Unfor-

tunately, plasma volumes were not measured over the
course of the present study. Should resting plasma
volume be lower in the denervated animals, the induced
diuresis of immersion would make the denervated ani-

mal more prone to hypotension. This is further sup-
ported by observed levels of PRA in the denervated
animals, which were threefold greater at rest, decreased
slightly with immersion, but never reached the lower
levels present in the intact animals.

Influence from high-pressure baroreceptors cannot be
ruled out, but it is doubtful that they contributed in any
significant way inasmuch as the same diuresis and
initial suppression of PVP occurred in both groups
without a change in MAP. Denervation by the Randall
technique (38) does not interrupt input signals from
these sensors. Continuous measurement of mean and

systolic arterial pressure in the intact animals failed to
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revealchangesof noteduringtheimmersionperiodand
failedto supportprevioussuggestions(2,20,28)that
volumetriccontrolofPVPandreninsecretionaremore
dependenton arterialpressurechangesthan central
venouspressurechanges.DespiteMAP, which was
clearlylowerat restandremainedsooverthecourseof
thestudy,denervatedanimalshadequalmagnitudesof
salt and waterlosscomparedwith intact animals.A
possiblerole for high-pressurebaroreceptorsin the
denervatedanimalsissupportedbytheworkofEchten-
kampetal.(11),whoshowedthatvagotomizedmonkeys
still showdecreasesinefferentrenalnerveactivitywith
volumeexpansion,this responsesubsequentlybeing
abolishedbysinoaorticdenervation.Themarked(three-
fold) PVP responsepostimmersionwithout demon-
strablefall inMAPfurthersuggestsafarlessimportant
rolefor thesemechanisms.Thisis furthersupportedby
changesin PVPin whichbothgroupsdemonstrateda
significantimmediatesuppressionwith immersionthat
wasmoreprominentlymaintainedin the intactgroup
(Fig.5).Thereversewouldhavebeenexpectedshoulda
slightbut significantelevationin MAPhaveoccurred,
particularlyin thedenervatedanimals.A possiblerole
remainsfor alteredpulsepressurechangesduringim-
mersion(34).Strokevolume(directlyrelatedto such
findings)showedatendency(butnota significantone)
tobehigherin the intactanimalsoverthecourseofthe
studyandmoresoduringimmersion.Thetendencyfor
PVPto increaseduring immersionin the denervated
animalsmayhavebeenrelatedtothesechanges.

Vagalnervesectionhasbeenshownto decreaseblood
pressurein nonhumanprimatesand,possibly,the re-
leaseofANP(7).TheloweredMAPin thepresentstudy
exceededtheaverage13-mmHgdropseenbyCornishet
al. (7) in intact animalsand approachedthe average
47-mmHgdrop seenin vagotomizedand sinoaortic-
denervatedmonkeys.Vagotomyin this studyhad no
effectonbaselineANPlevels.Genyet al. (15)recently
reportedtwo- to threefoldincreasesin ANPin human
cardiactransplantpatients.Thesesubjects,however,
demonstratedhigherMAPlevelsthancontrolsubjects
anddiffermarkedlyin this regardfromtheanimalsin
the presentstudy.Thereasonremainsunclear.These
changesmaybedueto theimmunosuppressivemedica-
tionshumansubjectsreceiveand/orthe differencesin
renalfunctiontheymayinduce(32).

PlasmaANP (releasedfrom thewall of the atriaby
stretch)(5)hadsimilarfourfoldincreasesinbothintact
anddenervatedanimals.Receptorsitesforthishormone
havebeenidentifiedinmanytissues,includingthewalls
of bloodvessels,hypothalamus,renaltubules,andglo-
merulararterioles(5,19).Theprocessofcardiacdener-
vationwouldnot beexpectedto alter stretch-induced
releaseofsuchsubstanceasevidencedbysimilarLVEDP
betweengroups.Pendergastet al. (35)reportedthat
waterimmersioncausesasignificantincreaseinplasma
ANPandapronouncednatriuresisin humans.In the
presentstudy,an increasein GFR,an increasein the
filtered load of sodium,and a decreasein sodium
absorptionmayhavebeendueto ANP-inducedalter-
ationsin renalfunction.However,the roleof ANPin

inducinganatriuresishasrecentlycomeunderquestion
with the uncoveringof urodilatin, a potent urine-
recoverablehormonesecretedbythekidneyandacting
onitsdistaltubules(19,33).Increasingevidencein rats,
dogs,and humanshasshownANP to be relatively
unimportantor unnecessaryfor thedevelopmentof a
normalnatriuresiswith oral salt loadingor infusion
(19).Its mostlikelyroleappearstobeincardiovascular
regulation,whereANP cancausea vasodilatationof
selectedvascularbedsin theperipheralvasculature(5,
19). Finally, it has beenshownthat ANP has an
inhibitoryeffectonreleaseof PVPfromthehypothala-
mus(5).Therise in ANP in thedenervatedmonkeys
mayhavecontributedtothesuppressionofPVPduring
thefirst 30minof immersion.A risein PVPoccurredin
therecoveryperiodinbothgroups,associatedwithafall
in ANP. Urodilatin wasnot measuredduring these
studies.

In thepresentstudyGFR,asmeasuredbycreatinine
clearance,increasedduringthe 1sth of immersionand
returnedto preimmersionlevelsby90min.Potassium
excretionparalleledpotassiumclearancewithout an
increasein fractionalpotassiumexcretion,suggesting
that the increasedlossof potassiumwasdue to a
GFR-inducedchangein the filteredloadof potassium
and not a changein tubularabsorptionor secretion.
Thusit wouldappearthat waterimmersioncauseda
kaliuresisthatcontributedtotheearlyphaseofincrease
in urine losses.Interestingly,sodiumexcretionand
clearancebothroseduringthefirst 30minofimmersion
and both peakedat 60 min. Fractionalexcretionof
sodiumdidnotincreaseuntil 60min.Thereforeit would
appearthat the natriuresiswas facilitatedby a two-
phasemechanisminbothstudygroups.Duringthefirst
phase,startingwithin the first 30min of immersion,
losseswerethe resultof a changein GFRandfiltered
sodiumload.By 90min of immersiona secondphase
wasinitiated,with thereturnof GFRto normallevels
and a delayedincreasein fractionalexcretion.This
phasewasassociatedwith factorsaffectingtubular
sodiumabsorptionand wasnot dependenton an in-
creasedsodiumload. Similar changesin GFR and
fractionalsodiumexcretionhavebeenreportedin hu-
mansduringwaterimmersion(35).Still, the stateof
fluid hydration (slight dehydration)in both animal
groupscannotbe ruled out asa contributorto these
findings(34).Althoughplasmavolume,redbloodcells,
andlosturinevolumeswerereplacedbyperiodicsaline
infusion,the animalsmayhavebecomeslightlydehy-
dratedas the studyprogressedbecauseof errors in
intake-outputmeasurementandfluid lossthroughthe
skinwhenimmersed.

Hemodynamicmeasurementsindicatedan identical
threefoldrisein left ventricularfillingpressurein both
groups,withoutchangein HR,consistentwith findings
previouslyreportedof a markedincreasein central
venouspressureandlackofaBainbridgereflexresponse
in nonhumanprimatesand humans(16).On immer-
sion,denervatedanimalsshowedno changein their
afterloadbut tendedtohavegreaterstrokevolumeand
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ensuing cardiac output, suggesting they were more
sensitive to resultant Starling effects.

In the present study, we observed a decrease in TPR
in the intact animals during immersion. The observed
decrease in PRA may partially explain why TPR tended
to fall in the intact animals. In contrast, neither TPR
nor PRA decreased in the denervated animals during
immersion. The reason for these latter observations

remains unexplained, and future studies are needed to
determine the mechanisms mediating these responses.

Perspectives

The exact mechanisms responsible for immersion-
induced PVP suppression in this study are unknown. A
diuresis occurred despite atrial distension (elevated
LVEDP) and absence of a vagal afferent limb. This may
indicate that an induced increase in central venous

pressure may still be an important triggering mecha-
nism, operating, however, through input from an eleva-
tion in cerebrospinal fluid pressure (CSFP) rather than
from altered nervous system traffic. Because right heart
pressure has direct communication to the cerebrospinal
fluid in all mammalian species (including dog, nonhu-
man primate, and human), a headward fluid shift during
immersion must result in some elevation in CSFP (24)

and could result in PVP suppression. This is supported
by recent work in nonhuman primates (24) showing
that immersion increases CSFP and that PVP secretion

in rats can be inhibited through elevation of CSFP (41,
42). This hypothesis would explain findings reported by
Gilmore and co-workers (16-18) of a diuresis with
immersion or volume loading in nonhuman primates
despite vagotomy, sinoaortic resection, dorsal rhi-
zotomy, and cardiac denervation. It would not explain
the absence of immersion response with vagotomy in
dogs, which also have direct right-sided pressure commu-
nication with cerebrospinal fluid (13, 14). This may
instead indicate, as previously reported, that dogs have
greater sensitivity to thoracically located low-pressure
mechanoreceptors compared with nonhuman primates.
However, in some experiments an immersion-induced
diuresis has occurred in dogs despite vagotomy (10).

In all the above experiments the focus has been on a
change in left atrial transmural pressure, rather than
right heart pressure, which has not been reported under
these circumstances. An increased left heart pressure is
not sufficient evidence to assume its transmission to the

right side through the highly compliant pulmonary
vascular bed. This may also explain findings of a lack of
renal response to acute elevations of left atrial pressure
by snaring in monkeys by Gilmore (16), these animals
later responding to acute volume loading with use of
dextran.

Finally, a recent report by Rossi (39) has implicated
factors that affect endothelin-3 levels in the release of

PVP and actions in vivo in rats. Unfortunately, most
previously reported data on fluid volume control in the
nonhuman primate have centered on renal nerve influ-
ences and have not included measurements of PVP.

Further water immersion studies are clearly needed in
which CSFP is directly measured and/or independently

manipulated to induce changes in salt and water excre-
tion and which include measurement of PVP and other

important substances, such as urodilatin and endothe-
lin.
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